Reprogramming the Maternal Zebrafish Genome after Fertilization to Match the Paternal Methylation Pattern

نویسندگان

  • Magdalena E. Potok
  • David A. Nix
  • Timothy J. Parnell
  • Bradley R. Cairns
چکیده

Early vertebrate embryos must achieve totipotency and prepare for zygotic genome activation (ZGA). To understand this process, we determined the DNA methylation (DNAme) profiles of zebrafish gametes, embryos at different stages, and somatic muscle and compared them to gene activity and histone modifications. Sperm chromatin patterns are virtually identical to those at ZGA. Unexpectedly, the DNA of many oocyte genes important for germline functions (i.e., piwil1) or early development (i.e., hox genes) is methylated, but the loci are demethylated during zygotic cleavage stages to precisely the state observed in sperm, even in parthenogenetic embryos lacking a replicating paternal genome. Furthermore, this cohort constitutes the genes and loci that acquire DNAme during development (i.e., ZGA to muscle). Finally, DNA methyltransferase inhibition experiments suggest that DNAme silences particular gene and chromatin cohorts at ZGA, preventing their precocious expression. Thus, zebrafish achieve a totipotent chromatin state at ZGA through paternal genome competency and maternal genome DNAme reprogramming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-10: Transcriptomics in Oocyte Mediated Cellular Reprogramming

a:4:{s:10:"Background";s:1707:"Early embryonic development in mammals begins in transcriptional silence with an oocyte-mediated transcriptional reprogramming of parental gametes occurs during a so called across-the-board process of “erase-and-rebuild”. In this process, the parental transcription programs are erased long before (maternal) or soon thereafter (paternal) fertilization to generate a...

متن کامل

Methylation dynamics in the early mammalian embryo: implications of genome reprogramming defects for development.

In mouse and most other mammalian species, the paternal and maternal genomes undergo parent-specific epigenetic reprogramming during preimplantation development. The paternal genome is actively demethylated within a few hours after fertilization in the mouse, rat, pig, bovine, and human zygote, whereas the maternal genome is passively demethylated by a replication-dependent mechanism after the ...

متن کامل

Maternal TET3 is dispensable for embryonic development but is required for neonatal growth

The development of multicellular organisms is accompanied by reprogramming of the epigenome in specific cells, with the epigenome of most cell types becoming fixed after differentiation. Genome-wide reprogramming of DNA methylation occurs in primordial germ cells and in fertilized eggs during mammalian embryogenesis. The 5-methylcytosine (5mC) content of DNA thus undergoes a marked decrease in ...

متن کامل

Genome-wide methylation patterns in normal and uniparental early mouse embryos.

In the normal diploid mouse embryo, active demethylation of the paternal genome but not of the maternal genome occurs within only a few hours and in a highly coordinated fashion as the zygote proceeds through the first G1 phase. This zygotic demethylation may be necessary to reprogram the sperm genome for somatic development. Immunofluorescence staining with an antibody against 5-methylcytosine...

متن کامل

Genome reprogramming during the first cell cycle in in vitro produced porcine embryos

Conflicting data still exist regarding the extent of paternal pronuclear DNA demethylation in one cell-stage mammalian embryos. Demethylation of paternal pronuclear DNA was observed in in vivo produced porcine zygotes, whereas in vitro produced embryos do not show any or only weak paternal genome demethylation. In our experiments, we have used and compared two in vitro techniques commonly used ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 153  شماره 

صفحات  -

تاریخ انتشار 2013